Academic Program Description Form

University Name: Al Nahrain University Faculty/Institute: College .of Science Scientific Department: Physics Academic or Professional Program Name: B.Sc in Physics, higher education Final Certificate Name: B.Sc,MSc,Ph.D Academic System: Semester Description Preparation Date: 202±-2020 File Completion Date: 2024

Signature: Baoch N. Abooel Head of Department Name: Prof Dr Saad Naji Abood

Date: 2024/10/16

Signature: Scientific Associate Name: Manaf Adnan Salch Date: 29/10/2024

The file is checked by: Ofcoba Madhan Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department: Date: Signature:

Approval of the Dean

Academic Program Description Form

University Name: Al Nahrain University Faculty/Institute: College .of Science Scientific Department: Physics Academic or Professional Program Name: B.Sc in Physics, higher education Final Certificate Name: B.Sc,MSc,Ph.D Academic System: Semester Description Preparation Date: 2024–2025 File Completion Date: 2024

Signature: Head of Department Name: Prof.Dr Saad Naji Abood Date: 2024/10/16 Signature: Scientific Associate Name:

Date:

The file is checked by:

Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department: Date:

Signature:

Approval of the Dean

1. Program Vision

The student's ability to understand and apply a variety of physical, and acquire the ability to explain and understand many of the physical processes.

2. Program Mission

Qualifying students practically and scientifically through an intensive scientific curriculum of teaching and learning methods and preparing the student in an academic way that is compatible with the necessities of scientific development. Preparing distinguished students in the field of scientific research who hold graduate studies.

3. Program Objectives

Increasing the efficiency of students and raising their level of knowledge so that they are qualified to work in various state departments so that they can be effective and distinguished elements in their fields of work and scientific research.

4. Program Accreditation

Does the program have program accreditation? And from which agency?

From the Association of Arab Universities

5. Other external influences

Is there a sponsor for the program?

Ministry of Higher Education and Scientific Research

6. Program Structure									
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*					
Institution Requirements	2		100						

College Requirements	2	100	
Department Requirements	2	100	
Summer Training	-	_	
Other			

* ممكن ان تتضمن الملاحظات فيما اذا كان المقرر أساسي او اختياري .

7. Program Dese	7. Program Description										
Credit Hours	S	Course Name	Course Code	Year/Level							
practical	theoretical			B.Sc							
2	2	Material physics I	PHY	الثالثة							
	2	Geometrical Optics	PHY	الثالثة							
	2	Quantum mechanics I	PHY	الثالثة							
	2	Methodology	PHY	الثالثة							
	2	Laser physics I	PHY	الثالثة							
	2	Optional Semiconductors	РНҮ	الثالثة							
2	2	Numerical methods of physics	РНҮ	الثالثة							
	2	Optional Sustainable Energy	РНҮ	الثالثة							
	2	Electromagnetic theory II	РНҮ	الثالثة							
	2	Mathematical physics	PHY	الثالثة							
2	2	Electronics II	PHY	الثالثة							
2	2	Numerical methods	PHY	الثالثة							
	2	Quantum mechanics II	PHY	الثالثة							
	2	Arabic language	PHY	الثالثة							
2	2	Laser physics I	PHY	الرابعة							
2	2	Solid state physics I	PHY	الرابعة							
	2	Advanced Medical physics	РНҮ	الرابعة							
	2	Nanotechnology	PHY	الرابعة							
2	2	Nuclear physics I	PHY	الرابعة							
2 2		Laser physics II	PHY	الرابعة							
2 2		Solid state physics II	PHY	الرابعة							
2	2	Nuclear physics II	PHY	الرابعة							
	2	Advanced Medical physics	PHY	الرابعة							
2	2	Solar physics	PHY	الرابعة							

8.Expected learning outcomes of the program

Knowledge	
Learning Outcomes 1	The student acquires the ability to explain and understand many of
	the biological processes in primary and graduate studies that serve
	the labor market and scientific research.
Skills	
Learning Outcomes 2	Preparing students who are scientifically empowered in the field of
	specialization and the labor market.
Learning Outcomes 3	Identifying the most important advanced scientific and research
	materials that serve the fields of communications and modern
	technology.
Ethics	
Learning Outcomes 4	Ability to apply principles of physics.
Learning Outcomes 5	The ability to solve scientific problems and find possible alternatives
	to those solutions.

9. Teaching and Learning Strategies

- 1. Solve various problems in different physics applications.
- 2. Giving homework to increase students' ability in problem–solving techniques.
- 3. Promote quick student response by asking conceptual questions during class.
- 4. Encouraging students in strategies to solve examples in class.
- 5. Encouraging students to publish research in graduate studies.
- 6. Encouraging students to use modern, advanced applications in the field of specialization.

10. Evaluation methods

- 1. Seminar.
- 2. Oral exams.
- 3. Quizzes.
- 4. Direct questions.
- 5. Homework.

6. Reports

11.Fa	culty					
Facult	y Mem	bers				
Number of the teaching staff		Special Requirements/S kills (if applicable)	Spe	ecialization	Academic Rank	
lecture	staff		Special	General		
	1		فيزياء طبية	علوم الفيزياء	استاذ دكتور	أ.د.اسماء هادي محمد
	1		بصريات	علوم الفيزياء	استاذ دكتور	ا.د.سهی موسی خور شید
	1		بصريات الكترون	علوم الفيزياء	استاذ دكتور	ا <u>َ د.</u> عدي علي حسين
	1		صلبة	علوم الفيزياء	استاذ دكتور	أ.د.احمد عبد الرحمن
	1		فيزياء نظرية	علوم الفيزياء	استاذ دکتور	أ.د.سعد ناجي عبود
	1		صلبة	علوم الفيزياء	استاذ دكتور	أ.د.عماد خضير عباس
	1		معالجة صور رقمية	علوم الفيزياء	استاذ دكتور	أ.د.ليث عبد العزيز عباس
	1		بلازما	علوم الفيزياء	استاذ دكتور	أ.د.خالد عباس يحيى
	1		فأأى	علوم الفيزياء	استاذ مساعد دكتور	أ.م.د.جزيل حسين
	1		بلازما	علوم الفيزياء	استاذ مساعد دکتور	ا.م.د.حسن ناصر
	1		صلبة	علوم الفيزياء	استاذ مساعد دکتور	أ.م.د.وسن علي موسى
	1		اشعاعية	علوم الفيزياء	استاذ مساعد دکتور	أ.م.د.مروة عبد المحسن
	1		احصائية	علوم الفيزياء	استاذ مساعد دکتور	أ.م.د ابر اهيم عبدالمهدي
	1		بلازما	علوم الفيزياء	استاذ مساعد دکتور	ا.م.د.نیسان سعود
	1		صلبة	علوم الفيزياء	استاذ مساعد دکتور	ا.م.د سدیم عباس
	1		نظرية	علوم الفيزياء	مدرس دکتور	م.د.احمد شاکر
	1		بصريات	علوم الفيزياء	استاذ مساعد	ا <u>م نور</u> محمد حسن
	1		نظرية	علوم الفيزياء	مدرس دکتور	م.د.عمر ایاد
	1		فلك	علوم الفيزياء	مدرس دکتور	م د سلام اسماعیل
	1		الكترونيك	علوم الفيزياء	استاذ مساعد دكتور	اً.م.د.زينب منذر

4

1	كيمياء	علوم كيمياء	استاذ مساعد دكتور	أ.م.د.احمد صبيح
1	رياضات	علوم رياضيات	مدرس دکتور	م د فاطمة عبد الصاحب
1	شريعة	شريعة	مدرس	م.عمر عدنان
1	رياضيات	علوم رياضيات	مدرس دکتور	م.د.منی صالح
1	اللغة العربية	اللغة عربية	مدرس دکتور	م.د.احمد نعمة
1	رياضيات	علوم الرياضيات	استاذ مساعد	ا.م.ابتسانم کامل
1	رياضيات	علوم رياضيات	مدرس دکتور	م.د.ايمان عبد الوهاب
1	رياضيات	علوم رياضيات	مدرس دکتور	م.د.احمد ايوب

Professional Development

Mentoring new faculty members

Assess teaching techniques and give the students surveys about those techniques.

Professional development of faculty members

Involve the new staff in teaching process and encourage them to develop the lecture with the supervision of the main lecturer.

12. Acceptance Criterion

(Setting regulations related to enrollment in the college or institute, whether central admission or others)

13. The most important sources of information about the program

دليل اتحاد الجامعات العربية "ضمان الجودة والاعتماد للبرامج الاكاديمية في كليات الجامعات العربية

الامانه العام /عمان/الاردن/2022

14. Program Development Plan

Involve more high level books and upgrade the lectures each year.

								Pro	ogram	n Skill	s Out	line				
		Rec	quired p	rogran	n Lea	rning	outco	mes								
			Ethics		Skills				K	nowled	lge	Basic or	Course Name	Cours	Year/Level	
C4	C3	C2	C1	B4	B 3	B2	B1	A4	A3	A2	A1	optional		Code		
								~	~	~	~	اساسىي	Atomic physics	PHY	مرحلة ثالثة	بكالوريوس
								~	~	~	~	اساسى	Plasma physics	РНҮ	مرحلة ثالثة	
								~	~	~	~	اساسى	Quantum mechanics I	РНҮ	مرحلة ثالثة	
								~	*	~	~	اختياري	Methodology	РНҮ	مرحلة ثالثة	
								~	~	~	~	اساسى	Electromagnetic theory I	РНҮ	مرحلة ثالثة	
								~	~	~	~	اساسى	Medical physics I	РНҮ	مرحلة ثالثة	
								~	~	~	~	اسىاسىي	Electronics I	PHY	مرحلة ثالثة	
														Dur	72412 74	
									`			اساسى	Molecular physics	РНҮ	مرحله تالته	

				~	~	~	~	اساسى	Electromagnetic theory II	РНҮ	مرحلة ثالثة	
				>	>	>	>	اساسى	Mathematical physics	РНҮ	مرحلة ثالثة	
				~	•	~	~	اسىاسىي	Electronics II	РНҮ	مرحلة ثالثة	
				~	>	~	•	اساسى	Numerical methods	РНҮ	مرحلة ثالثة	
				~	>	~	•	اساسى	Quantum mechanics II	РНҮ	مرحلة ثالثة	
				~	>	~	~	اساسىي	Arabic language	РНҮ	مرحلة ثالثة	
				~	>	~	~	اساسىي	Laser physics I	РНҮ	مرحلة رابعة	
				~	>	>	•	اساسى	Solid state physics I	РНҮ	مرحلة رابعة	بكالوريوس
				~	>	~	~	اساسى	Medical physics II	РНҮ	مرحلة رابعة	
				~	>	~	~	اساسى	Nanotechnology	РНҮ	مرحلة رابعة	
				~	*	~	~	اساسىي	Nuclear physics I	РНҮ	مرحلة رابعة	
				~	•	~	~	اساسىي	Laser physics II	РНҮ	مرحلة رابعة	
				~	~	~	~	اساسى	Solid state physics II	РНҮ	مرحلة رابعة	

				~	~	~	~	اساسى	Nuclear physics	PHY	مرحلة رابعة
									II		
				~	~	~	~	اسىاسىي	Advanced	PHY	مرحلة رابعة
								_	Medical physics		
				~	~	~	~	اسىاسىي	Solar physics	PHY	مرحلة رابعة
								_			

يرجى وضع اشارة في المربعات المقابلة لمخرجات التعلم الفردية من البرنامج الخاضعة للتقييم

1. Cour	se Name:	
	Laser pl	iysics (1)
2. Cour	se Code:	
3. Seme	ester / Year:	
	2025	_2024
4. Desc	ription Preparation Date:	
	20)24
5. Avail	able Attendance Forms:	
	A	Attending
6. Num	per of Credit Hours (Total) / Nu	imber of Units (Total)
10 ho	urs per week (4 theoretical $+ 6$	practical)
7. Cour	se administrator's name (me	ention all, if more than one name)
Nam	e: Dr. Wildan Wohammed Aw	ad
Emai	l: wildan.awad@nahrainuniv.	.edu.iq
1-zai	nab hazem shakir	
2-zer	ia kumel abduldin	
30za	hraa salman abdulamer	
8. Cours	se Objectives	
Course Object	tives	• Teaching the student the basics of laser
		physics
		• Teaching the student to write special
		reports for the laboratory.
		• Teaching the student the properties of
		the laser beam and the possibility of
		entering the applied fields
9. Teacl	ning and Learning Strategies	
Strategy		
	Discuss the topics of the meth	odological book and auxiliary
	eferences Theoretical lecture	es including problem solutions
	and discussion	ı of homework
	Ask students a set of thinking	questions during lectures for
	specific topics. Giving stude	nts homework that requires
	.finding se	lf-solutions

Week	Hours	Required Learning	Unit o	r subject	Learning	Evaluation
		Outcomes	name		method	method
1.	10	Study the Black Body Radiation	Black	Body Radiation		
2.	10	Photon interaction with matter	Absorpti Emission,	on, Spontaneous Stimulated Emission		
3.	10	The low Transitions	Forbid	den and Allowed Fransitions		
4.	10	Understand the Rate of Stimulated Emission and Absorption	Rate of St and	imulated Emission Absorption		
5.	10	Gain Coefficient, Absorption Cross Section	Gain Coef	ficient, Absorption ross Section		
6.	10	Understand Einstein's Calculations	Einste	in's Calculations		
7.	10	The different between Maser and Laser	Idea of	Maser and Laser		
8.	10	Understand Laser Principles	Princ	iples of Laser		
9.	10	How to find Gain Coefficient and Threshold Condition	Gain Coef	ficient and Threshol Condition		
10.	10	Pumping Plan and Methods	Pumping	Plan and Methods		
11.	10	Types of Optical Resonators	Types of	Optical Resonators		
12.	10	Resonator Optical of Stability	Resonator	Optical of Stability		
13.	10	Understand Resonator Mods	Res	onator Mods		
14.	10	Calculate Quality Factor	Qı	ality Factor		
15.	10	Continuous wave and pulse operation	Pulsed ar	d continuous laser utput types		
11. (Course	Evaluation				
Distribu daily pr	iting th eparation	e score out of 100 acc on, daily oral, monthly, g and Teaching Res	cording t , or writt	to the tasks as en exams, repo	signed to the orts etc	student such a
Require	d textbo	oks (curricular books, if	any)			
Main ref	erences	(sources)		Funde	mantial of la	ser physics (2
Recomn (scientifi	nended c. iourna	books and ref	Princip	oles of laser	(o.svelto 198	

Electronic References, W	ebsites
--------------------------	---------

1. Course Name:				
Numerical Analysis				
2. Course Code:				
PHY	S3205			
3. Semester / Year:				
First Semeste	r / 2024-2025			
4. Description Preparation Date:				
20 / 10	0 / 2024			
5. Available Attendance Forms:				
	presence			
6. Number of Credit Hours (Total) / Nu	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
7. Course administrator's name (me	ention all, if more than one name)			
Names: Dr. Omar Ayad Jalal Bilal Abdulsattar Yousif Saif Muhammed JasimEmail: omar.jalal@nahrainuniv.edu.iq Email: belal.alshekhly@nahrainuniv.edu.iq Email: belal.alshekhly@nahrainuniv.edu.iq Email: belal.alshekhly@nahrainuniv.edu.iq Email: belal.alshekhly@nahrainuniv.edu.iq Email: saif.muhammed@nahrainuniv.edu.iq 8. Course Objectives				
Course Objectives	 Teaching students the basics of 			
	numerical analysis.			
	 Teaching the student to write 			
	advanced programs in the MATLAB			
	language, specifically for numerical methods.			
 Teaching the student to solve some 				
physical and engineering problems using numerical analysis.				
9. Teaching and Learning Strategies				
 Strategy Discussing the topics of the methodological book and auxiliary references Theoretical lectures including problem solving and discussion of homework Asking students for a set of thinking questions during lectures on specific topics. 				

•	Giving	students	homework	that	requires	finding
	solution	s on their	own.			

10. Course Structure

		Required Learning	Unit or subject	Learning	Evaluation
Week	Hours	Outcomes	name	method	method
1	2	Graphical method	Graphical method	Theoretical and Experimental	Oral and written exam
2	2	Bisection method	Bisection method	Theoretical and Experimental	Oral and written exam
3	2	Fixed Point method	Fixed Point method	Theoretical and Experimental	Oral and written exam
4	2	Newton-Raphsen method	Newton-Raphsen method	Theoretical and Experimental	Oral and written exam
5	2	Gauss Elimination method	Gauss Elimination method	Theoretical and Experimental	Oral and written exam
6	2	Gauss-Seidal method	Gauss-Seidal method	Theoretical and Experimental	Oral and written exam
7	2	Least Square Fitting	Least Square Fitting	Theoretical and Experimental	Oral and written exam
8	2	Trapezoidal Rule	Trapezoidal Rule	Theoretical and Experimental	Oral and written exam
9	2	Simpson's method I	Simpson's method I	Theoretical and Experimental	Oral and written exam
10	2	Simpson's method II	Simpson's method II	Theoretical and Experimental	Oral and written exam
11	2	Euler's method	Euler's method	Theoretical and Experimental	Oral and written exam
12	2	Runge- Kutta method I	Runge- Kutta method I	Theoretical and Experimental	Oral and written exam
13	2	Runge- Kutta method II	Runge- Kutta method II	Theoretical and Experimental	Oral and written exam
14	2	Solution of non- linear system (Newton's method)	Solution of non-linear system (Newton's method)	Theoretical and Experimental	Oral and written exam

15	2	Solution of non-	Solution of	of non-linear	Theoretical	Oral and
15	2	(iteration method)	me me	ethod)	Experimental	written exam
11. (Course I	Evaluation		- (iii 0 u)	Experimental	
Daily tMonthHome	 Daily tests 10% Monthly exams 80% Homework assignments and student interaction in discussion sessions 10% 					
12. Learning and Teaching Resources						
Required textbooks (curricular books, if any)		any)	ESSENTIAL MATLAB (For Engineers and			
			,	Scientists), 3 rd edition (2007), Brain D. Hahan		
				and Dan	ial T. Valentine.	
Main references (sources)				 Getting MathWo MATLAE 2005),Ti Sigmon. 	Started with M. rks (2007). Primer (Sev mothy A. Davie	ATLAB 7, The venth Edition s <i>and</i> Kermit
Recomn	nended	books and refe	rences			
(scientifi	c journals	s, reports)				
Electron	ic Refere	nces, Websites		WWW.	mathwork.com	n

1. Cour	1. Course Name:			
Sustainable Energy				
2. Cour	se Code:			
	PHYS	3		
3. Seme	ester / Year:			
	First Semester /	2024-2025		
4. Desc	ription Preparation Date:			
	20 / 09 /	2024		
5. Avai	lable Attendance Forms:			
	By pr	esence		
6. Num	ber of Credit Hours (Total) / Numl	ber of Units (Total)		
		2		
7. Cour	rse administrator's name (menti	on all, if more than one name)		
Nam	es: at Droff Ahmod Kodhim Al Lami			
ASSIS	st. Plon. Annieu Kaunin Al-Lann	iv adu ia		
Ema		Iv.edu.iq		
8. Cours	se Objectives			
Course Objec	Course Objectives • Teaching students the basics of			
		sustainable Energy.		
		• Teaching the student to deal with		
		new scientific understanding of the		
		renewable energy		
	Teaching the student to find out why to			
	deal with new sources of energy and its problems			
9. Teaching and Learning Strategies				
Strategy	• Discussing the tonics of the methodological book and			
3,	auxiliary references			
	• Theoretical lectures including problem solving and			
	discussion of homework			
	Asking students for a	set of thinking questions during		
	lectures on specific top	pics.		
	Giving students hor	nework that requires finding		
	solutions on their own.			

10. Course Structure					
		Required Learning	Unit or subject	Learning	Evaluation
Week	Hours	Outcomes	name	method	method
1	2	Find out the total energy	Total Energy Usage	Theoretical and Experimental	Oral and written exam
2	2	Understanding	what is Energy?	Theoretical	Oral and written exam
3	2	Know about resources of energy	Energy Resources	Theoretical	Oral and written exam
4	2	Wind energy	Calculation of Wind Energy and Power	Theoretical	Oral and written exam
5	2	Renewable energies	Applications of Renewable Energies	Theoretical	Oral and written exam
6	2		Mid-term exam	Theoretical	
7	2	photovoltaic	Photovoltaic	Theoretical	Oral and written exam
8	2	Solar radiation	Solar Radiation	Theoretical	Oral and written exam
9	2	Solar power understanding	Solar Power	Theoretical	Oral and written exam
10	2	atmosphere	Atmosphere Influence on Solar Radiation	Theoretical	Oral and written exam
11	2	What is geothermal	Geothermal Resources	Theoretical	Oral and written exam
12	2		Resource Identification	Theoretical	Oral and written exam
13	2	How to calculate the geothermal power	Geothermal Power Technology	Theoretical	Oral and written exam
14	2	What is binary scale	Binary-Scale	Theoretical	Oral and written exam

15	2		Mid-	Term Exam				
11. (11. Course Evaluation							
 Daily tests 10% Monthly exams 80% Homework assignments and student interaction in discussion sessions 10% 								
12.	12. Learning and Teaching Resources							
Require	d textboo	ks (curricular boo	oks, if any)	Sustainat	ole energy textbook			
Main references (sources)				Renev	vable ewnerg	у		
Recommended books and references (scientific journals, reports)								
Electronic References, Websites								

1. Course Name :set	miconductors
---------------------	--------------

2. Course Code:

3. Semester / Year:2024_2025

4. Description Preparation Date:

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)

7. Course administrator's name (mention all, if more than one name) Name: alaajaarghazai Email: dr.alaa.ghazai2nahraianuniv.edu.iq

8. Course Objectives

Course Objectives

•	••••	,
•	••••	•
•	••••	•

9. Teaching and Learning Strategies

Strategy

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
2			Energy Band		
Z			and Carrier		
3			Concentratio		
4			in		
5			Thermal		
6			Equilibrium		
7					

8	Semiconduct
9	Materials
1	Basic Crysta
1	Structures
1	Valence Bon
1	Energy Band
1	Intrinsic
1	Carrier
	Concentratio
	Donors and
	Acceptors
	Carrier
	Transport
	Phenomena
	Carrier Drift
	Carrier
	Diffusion
	Generation
	and
	Recombinati
	Processes
	Continuity
	Equation
	Thermionic
	Emission
	Process
	Tunneling
	Process
	Space-Charg
	Effect
	High-Field
	Effects
	n-n Junction
	82
	Thermal
	Equilibrium
	Condition
	Denletion
	Region
	Depletion
	Canacitance
	Current

11. Course Evaluation Distributing the score out of 100 accordaily preparation, daily oral, monthly, 12. Learning and Teaching Resc	Voltage Characteristi Charge Stora and Transier Behavior Junction Junction Breakdown Heterojuncti browned to the student such as sor written exams, reports etc
T2: Ecaning and reaching reac	
Required textbooks (curricular books, if a	iny)
Main references (sources)	3RD EDITION Semiconductor Devices Physics and Technolog M. SZE and M. K. LEE JOHN WILEY & SO INC.2010
Recommended books and refe	rences Semiconductor Physics and Devices B Principles Third Edition Donald A. Near Univer \in of New Mexico
(scientific journals, reports)	Univer. (ip of New Mexico

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Dr. Suha Mousa Alawsi Working in Jah		
	1-Ruaa Tahseen		
	2-Ghufran Mohammed		
	3-Zena mowafaq		
	Alnahrain university /college of Science /physics		
3. Course title/code	Geomatrical optics		
4. Modes of Attendance offered			
5. Semester/Year	FIRST /2024-2025		
6. Number of hours tuition (total)	9 h		
7. Date of production/revision of this specification	10/10/2024		
8. Aims of the Course			
 Teaching the student the basics of optic Teaching the student how to use the prathem to the theoretical side 	es. Actical experiences of optics and linking		

9. Learning Outcomes, Teaching ,Learning and Assessment Methode

A-Cognitive goals.

A1- Enable students to know the most important Arab and foreign scientists in Optics

A2- Enable students to understand how to use some visual effects such as interference and polarization.

A 3- Enable students to analyze the resulting images.

A4- Enable the student to simulate some physical systems such as the eye, telescopes, cameras and communications

B. The skills goals special to the course.

B1 - Practical skills

B2 - Reminding and Analyzing Skills

B3 - Use and development skills.

Teaching and Learning Methods

-Discussing the topics of the curriculum book and the auxiliary references -Theoretical lectures including problem solving and discussion of homework -Asking students a set of thinking questions during the lectures for specific topics. -Giving students homework that requires finding self-solutions

Assessment methods

-daily tests -Monthly exams -Homework and student interaction in discussion sessions - Making scientific reports for the lesson topics C. Affective and value goals C1 - Enable students to write scientific reports in various scientific fields.

C2 - Enable students to simulate physical systems by finding appropriate solutions to the problems that appear in these systems.

C3- Enabling students to understand and analyze the results with a view to benefiting from it in any field of scientific research

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

- Follow up on scientific development by communicating with international universities via the Internet

-Participation in scientific conferences inside and outside the country

- Participation in workshops and scientific symposia inside and outside the country

10. Course Structure							
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method		
1	9h		Introduction	Pract+theor	Daily and monthly Exam		
2	9h		Refraction	Pract+theor	Daily and monthly Exam		
3	9h		Low of refraction	Pract+theor	Daily and monthly Exam		
4	9h		Reflection	Pract+theor	Daily and monthly Exam		
5	9h		Low of reflection	Pract+theor	Daily and monthly Exam		
6	9h		Lenses	Pract+theor			
7	9h		Thin lenses	Pract+theor			
8	9h		Thick lenses	Pract+theor	Daily and monthly Exam		
9	9h		Mirror	Pract+theor	Daily and monthly Exam		
10	9h		Prism	Pract+theor	Daily and monthly Exam		
11	9h		Ray tracing of paraxial ray	Pract+theor	Daily and monthly Exam		
12	9h		Ray tracing meridinal ray	Pract+theor	Daily and monthly Exam		
13	9h		Aberration	Pract+theor	Daily and monthly Exam		
14	9h		Types of aberrations	Pract+theor	Daily and monthly Exam		
15	9h		Selected Examples III	Pract+theor	Daily and monthly Exam		

11. Infrastructure	
1. Books Required reading:	Fundamental of optics , janckes 1986Supplementary Books:
	 ✓ Optical engineering , smith. First edition, 1998 ✓ Optical engineering , smith. second edition, 2007
2. Main references (sources)	www.opticka.com

A re re	- Recommended books and eferences (scientific journals, eports).	
B si	-Electronic references, Internet tes	
	12. The development of the curricu	ılum plan

1. Course Name:

Materials Physics

2. Course Code:

3. Semester / Year:

First/ 2024

4. Description Preparation Date:

21/10/2024

5. Available Attendance Forms:

Physical attendance

6. Number of Credit Hours (Total) / Number of Units (Total)

2 hours weekly (30 total)/ 2 units

7. Course administrator's name (mention all, if more than one name) Name: Assist. Prof. Dr. Sadeem Abbas Fadhil Email: sadeemfadhil@yahoo.com

8. Course Objectives

• Understanding Physical Properties: Enabling Course Objectives students to understand the physical properties of different materials, such as density, hardness, and elasticity. • Applying Theoretical Concepts: Connecting theoretical concepts in physics to practical applications in everyday life and industry. • **Developing Analytical Skills**: Enhancing analytical and critical thinking skills through the study of material behavior under various conditions. • Encouraging Innovation: Inspiring students to innovate in the design and application of materials, supporting research and development in fields like engineering and materials science. • Understanding Chemical and Physical Changes: Studying how changes in environmental conditions affect the properties of materials.

• Interacting with Technology: Enhancing students' understanding of how modern technology is used in the study and application of materials science.

9. Teaching and Learning Strategies									
Strategy	• b	Lectures and In y discussions to e	nterac encoura	tive Discussions: Use lecture age student engagement and o	es to introduce key conc clarify doubts.	epts, followed			
	• p	Case Studies: A hysics is applied	Analyzo in indu	e real-world applications and astry, engineering, and techno	case studies to show he	ow materials			
	• d	• Group Projects : Encourage collaborative learning through group projects that focus on designing or testing new materials, fostering teamwork and problem-solving skills.							
	• a	Simulations an nd predict materi	d Mod al beha	leling: Use computer simulat avior under different conditio	ions to visualize complens.	ex concepts			
	• f:	Flipped Classr reeing up class tin	oom: A me for	Assign readings or video lectu discussions, problem-solving	ares for students to revie g, and hands-on activitie	ew at home, es.			
	• f:	Guest Lectures ield or organize v	s and I visits to	ndustry Visits: Invite profes relevant industries to provid	sionals from the materia e real-world insights.	als science			
	• a	Problem-Based nd encourage the	l Lear m to p	ning : Present students with re ropose solutions based on the	eal-life problems related ir understanding of phy	l to materials sics principles.			
	•	Peer Teaching: wn understanding	: Allow g and e	v students to teach certain top enhancing communication ski	tics to their peers, reinfo	orcing their			
	• r	Assessment and eports, and preser	d Feed	back : Use varied assessment s, to gauge understanding and	t methods, including qu d provide timely feedba	izzes, lab ck.			
0.0		4							
U. Cours		Deguired		Unit or outlingt name		Evolution			
vveek	Hours	Learning		Unit or subject name	Learning method	Evaluation			
		Outcomes				method			
1	2	² Give students general about	the a idea the	Introduction	Whiteboard	Oral and written exams			
2	2	subject. Make the st able to under	udent stand	Atomic Bonding of Materials	Whiteboard	Oral and written exams			
	1				1	1			

		the Atomic Bonding of Materials				
3		Make the student able to understand forces and energy between atoms	Forces and energy between atoms		Oral and written exams	
4	2	Make the student able to understand the structure of solids.	Structure of Solids	Whiteboard	Oral and written exams	
5	2	Make the student understand the crystal defects and their effects on the properties of the materials.	Crystal Defects	Whiteboard	Oral and written exams	
6	2	exam	Mid exam 1	Whiteboard	Oral and written exams	
7		Learning about crystal lattice systems	Crystal lattice systems			
8	2	Learning about the Mechanical Properties of Materials	Mechanical Properties of Materials	Whiteboard	Oral and written exams	
9	2	Learning about the Electrical Properties of Materials	Electrical Properties of Materials	Whiteboard	Oral and written exams	
10	2	Learning about the thermal Properties of Materials	Thermal Properties of Materials	Whiteboard	Oral and written exams	
11	2	Learning about the Magnetic Properties of Materials	Magnetic and Properties of Materials	Whiteboard	Oral and written exams	
12	2	Learning about the Optical Properties of Materials	Optical Properties of Materials	Whiteboard	Oral and written exams	
13	2	Discussing reports	Reports discussion	Whiteboard	Oral and written exams	
14	2	Make the students learn about different materials applications	Materials applications	Whiteboard	Oral and written exams	
15	2	Preparation for final exam	Preparation for final exam	Whiteboard	Oral and written exams	
11. Course Evaluation						

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

-Daily exams and attendance 10 Marks -Mid term exams 25 Marks -Home works and reports 5 Marks - Final exam 60 Marks	
12. Learning and Teaching Resources	
Required textbooks (curricular books, if any)	Fundamentals of Materials Science and Engineering: An Integrated Approach By: WILLIAM D. CALLISTER, JR. & DAVID G. RETHWISCH, 2015 John Wiley & Sons, Inc.
Main references (sources)	Introduction to Solid State Physics, by Kittel 2005
Recommended books and references (scientific	MIT lectures about materials
iournals, reports…)	
Electronic References, Websites	Internet websites, Like edx and others.

1.	1 Course Name							
Quantu	Ouantum Mechanics 1							
2.	Cours	e Code:						
	00010							
3	Somo	stor / Voar						
	First Se	emester/ Third	1 Year Students					
4.	Descr	intion Pren	aration Date:					
01/09/	2024	<u>iption 110p</u>						
5.	Availa	able Attenda	ance Forms:					
	1. Cla	ssroom Lecture	es					
	2. Elec	ctronic Classro	om					
6.	Numb	er of Credit	Hours (Total) / Number of Ur	its (Total)				
	4 Hrs. :	a week (60 H	Irs. Total) / 4 untis					
7.	Cours	se administ	rator's name (mention all, if	more than one	e name)			
	Name: I Email: i	brahim Abdeli brahim sadia@	nahdi Sadiq Dahrainuniy edu iq					
8								
0.								
Course	•	To know th	e origins of the Quantum Mechanics (RW)				
Objectiv	ves 📍	To realize t	he basic concepts and principles of q(C	IM).				
	•	To have the	e ability to understand the applications	of (QM) .				
	•	To have ski	lls necessary to solve problems concer	ning QM and its appl	ications.			
	•	The student	is able to study advanced programs in	QM.	• .1 1 1			
• The student is also able to understand other physics programs that requires the knowle								
9	Teach	ing and Lea	arning Strategies					
Strateg	У	Classroo	om Attendance					
		• Exercise	es and solved problems.	(anorta)				
		Hollie A		(eports)				
		• Seminar	5					
10. C	ourse	Structure						
Week	Hrs.	Required	Unit title / Subjective	Learning	Evaluation			
		Learning	, -	method	method			
		Outcomes		method	method			
1	4		The Origins of OM Classroom lecture					
2	4		Historic Developments of QM Classroom lecture					
3	4		Basic Concepts and Principles of QM Classroom lecture					
4	4		The Basic Postulates of QM	Classroom lecture				
5	4		The Basic Postulates of QM	Classroom lecture				
7	4		Applications of TISE:THE FREE PARTICLE	Classroom lecture				
8	4		The Step Potential	Classroom lecture				
	1			Classicolli lecture				

10 4 The 1D Box Potential Classroom lecture 11 4 The 3D Box Potential Classroom lecture 12 4 The 1D Harmonic Oscillator Classroom lecture 13 4 The 3D Harmonic Oscillator Classroom lecture 14 4 The 3D Harmonic Oscillator Classroom lecture 15 4 The Ladder Operators Classroom lecture 15 4 Review Classroom lecture Ill. Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc: Daily Oral (5 Marks) Quizzes (10 Marks) Home Assignment (Solving problems and Reports) (5 Marks)							
Midterm Exam (20 Marks) 12. Learning and Teac	ching Resources						
Required textbooks (curricular books, if any) Main references (sources) 1. Fundamentals of Quantum Mechanics, Ajit Kumar, Cambridge University Press. First published 2018. 2. Introduction to Quantum Mechanics, A. C. Phillips Department, John Wiley & Sons Ltd, 2003. 3. Quantum Mechanics Concepts and Applications Second Edition, Nouredine Zettili, John Wiley & Sons, Ltd. 2009. 4. Introduction to Quantum Mechanics Second Edition. Inc. 2005							
 Recommended books and references (scientific journals, reports) Introduction to Quantum Mechanics by Dicke and Wittke An Introdution to Theory of Quantum Mechanics and Applications by Amnon Yariv Solved Problems in Quantum Mechanics (Schaum's Outlines Series) 							
Electronic References, Webs	ites						

1. Course Na	ame:						
Solid State	e Physics I						
2. Course Co	2. Course Code:						
PHYS410	2						
3. Semester	/ Year:						
1 st course	/ 4 th year						
4. Description	on Preparation Date:						
1/9/2024							
5. Available	Attendance Forms:						
In person	or Online						
6. Number of	f Credit Hours (Total) / Number of Units (Total)						
6 hours we	eekly (3 H theoretical + 3 H practical)						
7. Course a	dministrator's name (mention all, if more than one name)						
Name: Dr.	. Mohammed Tariq						
Email: Mo	hammed.albaidhani@nahrainuniv.edu.iq						
8. Course Ob	ojectives						
Course Objectives • Teach the student the basic concepts of solid state physics.							
	Providing the student with the skills to discuss and solve applied						
	problems related to solid state physics.						
	 Linking theoretical concepts with practical applications 						
• Linking meoretical concepts with practical applications.							
9. Teaching a	9. Teaching and Learning Strategies						
• Discussing the topics of the methodological book and auxiliary references							
	Theoretical lectures including problem solving and discussion of homework						
	Asking students for a set of thinking questions during lectures on specific						
	topics.						
	Giving students homework that requires finding solutions on their own.						

10. Course Structure

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1	3	Learning	Introduction	Theoretical	Oral and writ
2	3	Learning	Condensed matter	Theoretical	Oral and written

1

3	3	Learning	Crystal structure Primitive cell	Theoretical	Oral and written
4	3	Learning	Bravais lattice Primitive Wigner Seitz	Theoretical	Oral and written
5	3	Learning	Amorphous, poly and single phases	Theoretical	Oral and written
6	3	Learning	Symmetry operation	Theoretical	Oral and written
7	3	Learning	Lattice types and Miller Indices	Theoretical	Oral and written
8	3	Learning	Inter planer distance	Theoretical	Oral and written
9	3	Learning	Properties of cubic systems	Theoretical	Oral and written
10	3	Learning	Planes in Hexagonal crystal	Theoretical	Oral and written
11	3	Learning	Direction in crystal	Theoretical	Oral and written
12	3	Learning	Filling factor	Theoretical	Oral and written
13	3	Learning	Some structures diamond, Nacl, ZnS	Theoretical	Oral and written
14	1	Learning	Test	Theoretical	Oral and written
15	3	Learning	Summary	Theoretical	Oral and written
16	3	exam	Final Examination	Theoretical	Oral and written

11. Course Evaluation

40 points (10 laboratory + 10 homework + 20 mid exam)

60 points (10 laboratory exam + 50 final exam)

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)	 Introduction to Solid State Physics (Wiley, Global Edition) By: Charles Kittel ISBN: 978-1-119-45620-9 (August 2018) (712 Pages). Introduction to Solid State Physics (Wiley, India Edition) By: Charles Kittel ISBN-13: 978-8-126-57843-6 (2019) (712 Pages).
Main references (sources)	Solid State Physics (Revised Edition, Cengage Learning Asia Pte Ltd) By: Neil W. Ashcroft ISBN-13: 978-981- 4369-89-3 (2016) (1294 Pages).
Recommended books and references (scientific journals, reports)	Einfuhrung in die Festkorperphysik (6th Edition, Teubner GmbHWiesbaden) By: K. Kopitzki ISBN:978-3-8351-0144-9 (2007) (483 Pages).
Electronic References, Websites	Any website with the above titles. View solid state physics courses at reputable universities.

Solid State Physics Laboratory:

1. Assistant Lecturer Wsan Ali Khudair

- 2. Assistant Lecturer Zina Mowafaq Qaddouri
- 3. Assistant Lecturer Norhan Sabah Juma'a
- 4. Assistant Lecturer Mais Atallah Wahsh

1. Course Name:	
Laser phy	vsics (1)
2. Course Code:	
3. Semester / Year:	
2024-	2025
4. Description Preparation Date:	
202	24
5. Available Attendance Forms:	
At	tending
6. Number of Credit Hours (Total) / Nur	mber of Units (Total)
8 hours per week (3 theoretical + 6 pr	actical)
7 Course administrator's name (mer	ntion all if more than one name)
Name: Dr. Narjis Zamil Abdulzahra	
Email: narjis.zamil@nahrainuniv.ed	lu.iq
8. Course Objectives	
Course Objectives	1. Understand Laser Principles: Grasp the
	fundamental concepts of stimulated
	emission, population inversion, and the
	workings of different types of lasers.
	2. Analyze Laser Systems: Analyze the
	structure and functioning of laser cavities,
	optical components, and beam
	propagation.
	3. Apply Laser Technologies: Apply
	knowledge of lasers to real-world
	applications in medicine, communications,
	and industry.
	4. Experiment with Laser Setups: Conduct
	experiments to measure laser properties
	like wavelength, power, and coherence.
	5. Evaluate Advances in Laser Technology:
	Critically evaluate modern laser

	technologies and emerging trends in laser research and development.				rends in laser
9. T	9. Teaching and Learning Strategies				
Strategy	Strategy To teach Laser Physics, use hands-on experiments like optical alignment, problem-based learning for real-world laser issues, and simulations to visualize laser processes. Employ flipped classrooms for deeper in-class discussions and group projects for collaborative learning. Leverage diagrams, animations, and virtual labs for conceptual clarity, and assess through project- based work and student presentations for practical application.				
10. Co	urse S	tructure			
Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1.	9	Laser physics and Principle of laser work	Laser physics and Principle of laser worl		
2.	9	The law of conservation of energy	Energy can never be created or destroyed		
3.	9	Bohr model of the atom	Energy Levels of the atoms		
4.	9	Understand the Rate of Stimulated Emission and Absorption	Absorption, Spontaneous emission Stimulated emission		
5.	9	Boltzmann distributions and thermal equilibrium	thermal equilibrium, Norma Population		
6.	9	Population inversion	Three Level Laser , Four Level Laser		
7.	9	Laser Generation	Requirements for Laser Action		
8.	9	Pumping Plan and Methods	Pumping Plan and Methods		
9.	9	Continuous wave and pulse operation	Pulsed and continuous laser output types		
10.	9	Lasers types	1. Gas Lasers A. CO ₂ Laser: Used in cutting, engraving, and		

			·	
			medical applications	
			like dermatology.	
			B. Helium-Neon (He-	
			Ne) Laser: Commonly	
			used in alignment,	
			holography, and	
			scientific research.	
			C. Argon Ion Laser:	
			Used in medical	
			treatments, such as ey	
			surgery, and in	
			scientific research.	
			D. Nitrogen Laser:	
			Used in pulsed UV ligh	
			applications like	
			spectroscopy and	
			laser-induced	
			fluorescence.	
11.	9		A. Nd	
			Laser: Widely used in	
			ndustrial applications	
			ike welding and	
			medical procedures.	
			B. Ruby Laser: One of	
			the first lasers ever	
			created, used in	
			dermatology and	
			tattoo removal.	
		Solid-State Lasers	C. Ti	
			Laser: Often used in	
			temtosecond pulse	
			generation for	
			spectroscopy and	
			maging.	
			D. Er	
			Laser: Primarily used	
			in dentistry and	
			dermatology for	
			precise cutting and	
4.0			ablation.	
12.	9		A. Ked Diode Laser:	
			commonly found in laser	
			pointers and barcode	
		Semiconductor (Diode)	Canners.	
		Lasers	p. Initrared Diode Laser:	
			Used in optical	
			vision systems	
			C Blue Diode Loser	
			Employed in Rly roy	
			Employed in Did-lay	1

				·	
			players and high-		
			definition optical storage.		
			D. Green Diode Laser:		
			Often used in visual		
			displays, laser light shows		
			and scientific applications		
13.	9		A. Erbium-Doped Fiber		
	-		Laser (EDFA): Used in		
			optical communications for		
			signal amplification.		
			B. Ytterbium-Doped Fiber		
			Laser: Popular for material		
		т"1 т	processing, welding, and		
		Fiber Lasers	cutting.		
			C. Thulium-Doped Fiber		
			Laser: Used in medical		
			applications, such as tissue		
			ablation and laser surgery		
			D. Raman Fiber Laser: Use		
			for high-power laser system		
			and spectroscopy		
11	0		A Rhodamine 6G Dve		
14.	9		aser' Used in		
			Juorescence and		
			spectroscopy due to its		
			unable range		
			B Coumarin Dya Lagar		
			D. Countain Dye Laser.		
			i unable into the UV		
		Dva Lasars	ange, onen used in		
		Dye Lasers	piological and chemical		
			esearcn.		
			L. Fluorescein Dye Laser:		
			Applied in ophthalmology		
			or laser treatments like		
			retinal photocoagulation.		
			D. Pyrromethene Dye		
			Laser: Used in pulsed		
			applications and high-		
			energy experiments.		
15.	9		A. Argon Fluoride (ArF)		
			Laser: Used in LASIK eye		
			surgery and lithography		
			for semiconductor		
			manufacturing.		
		Excimer Lasers	B. Krypton Fluoride (KrF)		
			Laser: Common in UV		
			ithography for		
			microelectronics and eye		
			surgeries.		
			C Xenon Chloride (XeCl)		
				1	

lermatology and	
ndustrial surface	
reatments.	
D. Xenon Fluoride (XeF)	
Laser: Utilized in research	
applications for UV light	
production and	
spectroscopy	

11. Course Evaluation

Course evaluation for a Laser Physics course typically includes a combination of assessments designed to gauge both theoretical understanding and practical skills. Students may be evaluated through written exams covering core laser concepts, quizzes on specific topics, and problem-solving assignments. Hands-on lab work plays a crucial role, where students are assessed based on their ability to conduct experiments, analyze data, and properly handle laser equipment. Additionally, project-based assessments and presentations allow students to demonstrate their understanding of laser applications in real-world scenarios. Participation in group projects and discussions also contributes to evaluating teamwork and communication skills.

12. Learning and Teaching Resources Beguired textbooks (ourrigular books, if any)

Required textbooks (curricular books, if any)	
Main references (sources)	1.Laser Fundamentals" by William T.
	Silfvast (2nd Edition, 2004)
	2." Lasers" by Anthony E. Siegman
	(1986)
Recommended books and references (scientific	"Laser Fundamentals" by William T. Silfvast (2nd Edit 2004)
journals, reports)	,
Electronic References, Websites	

كادر المختبر

1.زینه کمیل 2.زینب حازم

3 ز هر اء سلمان

Modu	Module Aims, Learning Outcomes and Indicative Contents			
(الإرشادية والمحتويات التعلم ونتائج الدراسية المادة أهداف			
Module Aims المادة أهداف الدراسية	 Introducing students to the general basic concept of Medical Physics. Understanding Mechanics of the Body. Focusing on the theoretical aspects of the discussed subject material, with some examples added for clarification. Introducing the student to the medical effects of the forces acting on the body. 			
Module Learning Outcomes التعلم مخرجات الدراسية للمادة	 Students can understand the general concept of Medical Physics. Students will understand the Mechanics of the Body. Allow students to know about Fundamental Forces. Learn about the Medical effects of gravitation forces. Students can understand the Static Equilibrium, Stability and Elasticity of the body. The ability to know about the Pressure System of the Body. 			
Indicative Contents المحتويات الإرشادية	 Indicative content includes the following. 1- Introduction to Medical Physics. 2- The Fundamental Physical Constants. 3- The Mechanics of the Body. 4- Medical effects of gravitation forces. 5- Stability & Elasticity. 6- Friction. 			

Learning and Teaching Strategies استراتيجيات التعلم والتعليم		
Strategies	 Discussing the topics of the curriculum book and supporting references Theoretical lectures including problem solving and discussion of homework Asking students, a set of thinking questions during the lectures for specific topics. Giving students homework that requires finding self- solutions. Giving students topics related to the curriculum to prepare a seminar. 	

	Delivery Plan (Weekly Syllabus)
	المنهاج الاسبوعي النظري
	Material Covered
Week 1	Introduction To Medical Physics
Week 2	The Mechanics of the Body
Week 3	The Energy Household of the Body
Week 4	The Pressure System of the Body
Week 5	The Electrical System of the Body
Week 6	Fundamental Forces
Week 7	Medical effects of gravitation forces
Week 8	Static Equilibrium
Week 9	Stability
Week 10	Elasticity
Week 11	Friction
Week 12	Static friction
Week 13	The Pressure System Of The Body
Week 14	Final exam

Learning and Teaching Resources مصادر التعلم والتدريس		
	Text	Available in the Library?

- · · · ·	Medical Physics by Hasan Maridi , 3 rd edition, 2020 Medical Physics Notes, 2023	
Required lexts	https://www.tutorialsduniya.com/notes/medical- physics-notes/	

1. Course Name:

First

2. Course Code:

3. Semester / Year:

2024-2025

4. Description Preparation Date:

5. Available Attendance Forms:

6. Number of Credit Hours (Total) / Number of Units (Total)
 45

7. Course administrator's name (mention all, if more than one name) Name: Assis. Prof. Dr. Jazeel Hussein Azeez Email: Jazeel.azeez@nahrainuniv.edu.iq

8. Course Objectives

	· · · · · · · · · · · · · · · · · · ·	
Course Objectives	 Identifying the concept of nanotechnology and the historical development of Nano science and technology, forming the energy gap, and estimating energy levels. The most important methods used to measure nanomaterial Formation and characterization of nano layers, nano applications, Synthesis and fabrication of nanoparticles, characterization and application of nanoparticles, and applications. Top-down nanostructure techniques, Nano devices and applications. The most important nanomaterials and how to prepare them 	
9. Teaching and Learning Strategies		
Strategy	Lectures taught in person in halls as well as electronic lectures	

10. Course Structure					
Week	Hours	Required	Unit or subject name	Learning	Evaluation
		Learning		method	method
		Outcomes			
1	2		Identifying the concept of nanotechnology and the historical development of Nano science and technology, forming the energy gap, and estimating energy levels.	In presence method	Participation
2	2		The most important methods used to measure nanomaterial	In presence method	Daily Quiz & participation
3	2		Formation and characterization of nano layers, nano applications,	In presence method	Daily Quiz & participation
4	2		Mid Examination	In presence method	
5	2		Top-down synthesis and fabrication of nanoparticles, characterization and application of nanoparticles, nanostructure techniques, nanodevices and applications.	In presence method	Daily Quiz & participation
6	2		The most important nanomaterials and how to prepare them	In presence method	Daily Quiz & participation
7	2		Getting to know the concept of nanotechnology and the historical development of nanoscience and technology, forming the energy gap, and estimating energy levels.	In presence method	Daily Quiz & participation
8	2		Examination	In presence method	
9	Final examination				

11. Course Evaluation			
1.Daily exams 10%			
2.Homework assignments 10%			
3.mid exam 10%			
4. Try exam 10%			
5. (1.+2.+3.+4.)Quarterly quest 40%			
6. Final exam 60%			
12. Learning and Teaching Resources			
Required textbooks (curricular books, if any)	1.Nanotechnology and Nanoelectronics		
	Materials, Devices, Measurement		
	Technique		
Main references (sources)	2.Fundamentals of Nanotechnology		
Recommended books and references (scientific	3.Nanostructures and Nanomaterial's		
journals, reports)	synthesis, properties and application		
Electronic References, Websites	4. New trends in Nanotechnology and		
	Nanoelectronics Materials, Devices,		
	Measurement Technique		

<u>First Course- Nuclear physics</u> -

Course description

This course explores elements of nuclear physics for physics students. It covers basic properties of the nucleus, a nuclear force, binding energy and nuclear stability, nuclear models "two types of models are emphasized: The liquid drop model and the shell model". It also covers, radioactive decays and nuclear radioactivity. The lecture course will be integrated with problem solving classes.

- Pro. Dr. Kareem Khalaf Mohammad (theoretical) .
 - ب. (Essam. mohamed Rasheed (practical)
 - ت. (Saja hazem(practical)
 - ث. (Suhaeeb abd allha(practical)

University Al-Nahrain- College Science	Educational Institution .1
Department Physics	University Department / .2 Center
Nuclear Physics	Course name/code .3
-	Programs in which it .4 enters
mandatory attendance	Forms of attendance .5 available
Quarterly	Semester/year .6
hours per week total 60 hours 3	Number of hours of study .7 ((total
2024-2025	Date this description was .8 prepared

Course objectives .9

The main objectives of this course is hopefully to be achieved in the following steps:

- An overview of the history of the physics of the nucleus.
- A review of elements of quantum mechanics necessary to understand nuclear physics.
- Introduction of the liquid drop model and shell model
- Applications to the study of natural radioactivity and nuclear reactions.

Learning outcomes and methods of teaching, learning and assessment .10

knowledge and understanding -^j

To provide students with an opportunity to develop knowledge and understanding of the key principles and applications of Nuclear Physics, and their relevance to current developments in physics.

ب - Subject-specific skills

Teaching and learning methods

- Theoretical lectures -
- Asking students a set of thinking questions during the lectures for specific .topics
 - .Giving students homework that requires finding self-solutions -Evaluation methods
 - aluation methods
 - daily tests -
 - Monthly exams -
 - Homework and student interaction in discussion sessions -

Thinking skills: Scientific problem solving skills-Giving students problems that need to be solved by referring to external references that can be found via the Internet

General and transferable skills (other skills related to employability and - .(personal development

Follow up on the scientific development of curricula for international universities via the Internet

Course Structure .11

Evaluation method	educatio n method	Unit/course or topic name	Required learning outcomes	Hours	Week
Oral and written exam	theoretical) (Background and basic nuclear properties	Historical review and general introduction The atomic mass unit Energy unit Basic nuclear properties	4	1
Oral and written exam	theoretical) (Basic nuclear properties	The size of the nucleus, Nuclear energy level, Intrinsic angular momentum of the nucleus, Nuclear electromagnetic moment, Electric Quadra pole moment, Parity	4	2
Oral and written exam	theoretical) (Yukawa's mesons field theory, Nuclear binding energy, average binding energy	Yukawa's mesons field theory, Nuclear binding energy	4	3
Oral and written exam	theoretical) (Nuclear forces, Separation energy of nuclear particle	Nuclear forces, Separation energy of nuclear particle (alpha neutron, proton), Abundance systematic of the stable nuclides	4	4
Oral and written exam	theoretical) (Nuclear models	Nuclear models, Electron proton hypothesis, Prout hypothesis	4	5
Oral and written exam	theoretical) (Liquid drop model, mass parabola	Liquid drop model, Mass parabola	4	6
		Mid Exam-1	Mid Exam		7
Oral and written exam	theoretical) (Shell model	Shell model, potential, Finite and infinite square potential, harmonic potential	4	8
Oral and written exam	theoretical) (Shell model and optical model	Spin orbit potential, Predictions of shell model, Optical model	4	9
Oral and written exam	theoretical) (Interaction of radiation with matter	Interaction of radiation with the matter, Statistical nature of radiation	4	10
Oral and written exam	theoretical) (Interaction of radiation with matter	Heavy charge particles, Light charge particles,	4	11
Oral and written exam	(theoretical	Interaction of radiation with matter	Neutrons, Electromagnetic radiation,	4	12
Oral and written exam	theoretical) (Exposure and dose	Exposure and dose principles,	4	13
Oral and written exam	theoretical) (Shielding	Shielding principles	4	14
		Mid Exam-2	Mid Exam-2	4	15

Infrastructure			
 Text Book: Walter E. Meyerhof: elements of nuclear physics Kenneth S. Krane: Introductory nuclear physics Henry Semat and John R. Albright: Introduction to atomic and nuclear physics Beiser: Concept of modern physics Irving Kaplan: Nuclear physics Cohen: Concepts of Nuclear Physics Kupta: Concepts of Modern Physics 	:Required readings 2 Basic Texts 2 Course Books 2 Other •		
/	Special requirements (including, for example, workshops, courses, software (and websites		
NON	Social services (including guest lectures, professional training (and field studies		

	Acceptance .12
NON	Prerequisites
10	Less number of students
40	More number of students

On successful completion of the course students will be able to:

1. Have acquire knowledge and understanding about the electronic and nuclear structure of atoms.

2. Have solved problems related to the structure of atoms and the effect of ionizing radiation on the body and the environment.

3. Have an appreciation of the influence of atomic and nuclear physics on modern scientific development.

4. Have the foundations for examining in more detail various aspects of experimental and theoretical physics which relate to both atomic and nuclear physics.

5. Be able to explain the key areas in which Atomic and Nuclear Physics affects everyday living.